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Abstract

The relation between the diversity and the inter-
species interactions in ecosystems is studied using
a simple population dynamics model. The interac-
tion terms have the characteristic form of xλ

i x1−λ
j .

Simple rules for addition and elimination of species
is also included. This model is called the “scale-
invariant” model and known to reproduce various sta-
tistical properties in real ecosystems. It is found that
this model system has two phases depending on the
parameter λ. When λ is smaller than a certain value
λc, the number of species fluctuates in finite range.
As λ approaches λc, the average number of species
diverges as (λc − λ)−1. When λ > λc, the number
of species grows to infinite. Further it is found that
larger λ yields both stabilization of the system and
enforcement of interactions at the same time.

1 Introduction

What is the difference between ecosystems in which
many species can coexist and those in which only few
species can survive? How does the interaction among
species (preying, competition, cooperation, parasitism
and so on) affect the stability of whole ecosystems?
Understanding the relations between diversification of
whole ecosystems and underlying dynamics of each
species has been one of the most challenging problems
in science of complex systems [1, 2, 3, 4, 5, 6].

Since real ecosystems are organized through Dar-
winian processes, it is natural to construct model
ecosystems through trial and error schemes: the model
should include some kind of rules of invasions, muta-
tions or extinctions. In this paper, we study a sim-
ple population dynamical model in which the ecosys-
tem self-organize to diverse structure through inva-
sions and extinctions.

The authors have proposed a simple population dy-
namics model called the “scale invariant” model in
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which the interaction term are given as follows:

aij(
xi

xj

)λxj = aijx
λ
i x1−λ

j , (1)

where 0 < λ < 1
2 . The model succeeded in organizing

diversifying ecosystems [7]. Furthermore, it was found
that the model reproduces statistical characteristics
of real ecosystems. For example, life span of species
obtained from the simulation shows good agreement
with fossil data and is well fitted by a q-exponential
function[8]. Topological feature of food web structures
is also reproduced by the model [9].

Those facts implies the simple model still captures
some essential features of the real ecosystem. There-
fore it is natural to expect that some features are uni-
versally shared in systems in which many species make
interactions with each other. In this paper, the rela-
tionship between the interspecies interactions and di-
versity and the stability of the system is systematically
studied using the scale-invariant model.

2 Model

2.1 population dynamics

The population dynamics of species is described as
follows:

ẋi = −cixi +
∑

aij<0

aijx
λ
i x

(1−λ)
j +

∑
aij>0

aijx
(1−λ)
i xλ

j ,

(2)
where xi is the population density and ci is the metab-
olization rate of i-th species. The equation consists of
the metabolization term and the scale-invariant inter-
action terms with the characteristic exponent 0 < λ <
1
2 .

We focus on energy transport in the food web and
only assumes prey-predator interaction for simplicity.
Hence interaction coefficients are assumed to be anti-
symmetric form : aij = −aij. All metabolization rate
ci are set to be 1 in the following. Without any inter-
action terms, x decays exponentially according to the
metabolization term.
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For simplicity, λ is set to be uniform for all species
in each simulation. Preying term is limited to be con-
vex as a function of prey and predator. This corre-
sponds that preying rate per predator saturates under
the condition when prey and predator are abundant.
These saturation is not so unrealistic and will be com-
mon in nature.

Since species mentioned above do not have growth
term, we need some autotrophic species which have
growth term. Hence we introduce a unique producer,
which is called “plant” species in the following. And
we call the heterotrophic species mentioned above “an-
imal” species. The role of the plant species is to supply
energy to animal species. The population dynamics of
the plant species consists of a logistic growth term and
interaction terms. The equation is as follows:

ẋ0 = Gx0(1 − x0) +
∑

j

a0jx
λ
0x

(1−λ)
j , (3)

where G is the growth rate.
In our model, only the logistic growth term have

the scale dependent form and, therefore, this term de-
termines the scale of x of the whole system. Energy
generated by plant species are distributed to animal
species by preying interactions. Animal species dis-
sipate energy gained directly or indirectly from plant
species. Hence animal species can not survive without
energy supplied by plant. We consider the system to
be organized by one plant and many animal species.
In the following, growth rate is set to be large ( 100 )
in order to avoid the whole extinction caused by the
extinction of the plant species.

2.2 addition of new species and extinction

To see the dynamics of species richness, the rules of
invasions of new species and extinctions are introduced
in this model.

If the population of i-th species (xi) becomes 0,
the species is regarded as being extinct and eliminated
from the system. Animal species which become to
have no prey also go extinct.

Invasions of new species are applied when all the
populations of the system become stable. Only one
species invades at a time. The initial population den-
sity of new comer is chosen to be very low (10−8).
The number of interaction of new comer is selected
randomly from {1, 2, 3, . . . , m}. The interaction coef-
ficients are also selected randomly from uniform dis-
tribution ranging [−α, α]. Therefore m and α are the
parameters which determines the strength of interac-
tion. In the beginning of each simulation, there exists
only plant species in the system.

Figure 1: Temporal behavior of N when λ changes.
Four lines corresponds to the case when λ =
0.45(diversifying phase), 0.41(near critical value),
0.40(steady phase) and 0.38(steady phase) from top
to bottom respectively. The lines are averaged
over 10 samples(λ = 0.45) or 100 samples(λ =
0.41, 0.40, 0.38). The diversity saturates when λ < λc,
on the other hand, it continues to increase when
λ ≥ λc.

3 Results

3.1 diversifying behavior

First we investigated the dependence of temporal
behavior of the number of species, N , on the in-
teraction exponent λ. The parameters were set to
α = 1.0, m = 5.

Temporal behavior of N shows two phases as λ

changes. Fig. 1 shows typical dynamics of diversity
in both two phases. The first phase is observed when
λ is smaller than some characteristic value λc. In this
phase, the ecosystem tend to collapse and N do not
increase. The system remains to be a simple structure.
We call this phase “steady phase”. The other phase
is “diversifying phase”. This phase is found when λ

is larger than λc. In this phase, N begin to increase
with time and large scale community of species can
be organized. Diversity spontaneously emerges and
the system can maintain the diversity in this phase.
Near the boundary of these two phases (λ ≈ λc), N

fluctuates with neither trend to grow nor to collapse.
Sample average of N grows as ∝

√

t′ approximately,
here t′ is number of invasions.

The system has tendency to have more species with
larger λ in both two phases. Enlargement of λ enables
the system to have more coexisting species. The aver-
age number of species, 〈N〉, in steady phase are plotted
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as a function of λ in Fig. 2. We define the diversifying
phase as the phase in which N tend to increase after
40 thousands invasion times. Critical value λc is 0.41
and the 〈N〉 in steady phase diverges as (λc − λ)−µ.
The exponent µ is about 1.

The critical behavior can be understood as an asym-
metric random walk in diversity space. If the proba-
bility that N increases (p+) and the probability that
it decreases (p−) are independent of N , the tempo-
ral change in N should be described by asymmetric
random walk. When λ < λc, p+ is considered to be
smaller than p−. Hence N remains in certain range.
When λ = λc, two probabilities are considered to be-
come the same (p+ = p−). When λ > λc, p+ be-
comes larger than p−. Hence N diverges to infinite
as time when λ ≥ λc. N corresponds to distance of
random walker from its starting point because N is
bounded to be positive. Therefore the sample aver-
age of the N diverges as ∝

√

t′ when λ = λc ,which
is qualitatively consistent with the simulation result.
If ∆p ≡ (p− − p+) are proportional to (λc − λ), 〈N〉

diverges as (λc − λ)−1, which is also consistent with
the simulation result.

Behavior of N is also depend on m and α. Larger
m or α makes the system harder to organize diverse
structure. Therefore the observed phase is depend on
m,α and λ. Fig. 3 shows the phase boundary between
two phases and λc monotonously increase with m and
α. This can be explained that λ must be large enough
that the ecosystem can diversify when m or α is larger.
The result seems to be consistent with the “paradox
of ecology”: higher connectance and higher magnitude
of interactions make species prone to extinct.

3.2 stability of emerged ecosystems

Since the dynamics of populations is asymptotically
stable in almost all the case, we can estimate the sta-
bility of the whole ecosystem by calculating the eigen-
values of linear stability matrix (Sij = ∂ẋi

∂xj
) around its

fixed point. Although temporal behavior of N depends
not only on stability but also on feasibility, stability is
considered to be a key factor to diversification. In ad-
dition, comparison with May’s argument will be also
important.

We calculated the linear stability matrix and eval-
uated the stability using eigenvalues of linear stability
matrix. Since surviving species are selected through
extinctions, the linear stability can not be evaluated
directly from λ, m and α. They must be calculated
from the simulation results. We executed simulations
till N become 50 for each parameters and then calcu-
lated the eigenvalues of the linear stability matrix.

Figure 2: Average number of species in steady phase is
shown as a function of λ (left) and λ−λc (right). The
dotted line corresponds to a function proportional to
(λc − λ)−1. The critical value λc is 0.41.

Figure 3: Critical values λc as a function of α. Three
lines corresponds to the case m = 9,7 and 5 from top
to bottom.
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Fig. 4 shows the distributions of the real part of the
eigenvalues. The distributions moves to smaller side
(left side in Fig. 4) and becomes more sharp around
their peak as λ becomes larger. This means that the
whole ecosystem becomes more stable when λ becomes
larger. Fig. 5 shows the distributions of off-diagonal
elements of the linear stability matrix. This graph
shows that the off-diagonal elements of the linear sta-
bility matrix are widely distributed when λ is large.
the variance of the off-diagonal part become larger as
λ increases. According to May’s argument, large vari-
ance of off-diagonal part of the matrix destabilize the
system when elements are completely random. How-
ever this plot shows inverse results and seems to con-
flicting with May’s results. The reason why large λ

stabilize the system even though variance of the ele-
ments increases is that the matrix become more close
to anti-symmetric form from random matrix as λ in-
creases. Since we assume aij to be anti-symmetric
form, the matrix becomes closer to anti-symmetric
form when λ increases. The distribution in Fig. 5
certainly become more symmetric around 0 when λ is
large.

Figure 4: Distributions of eigenvalues when 50 species
coexist with each λ. The data are averaged over 500
samples.

4 Conclusion

We have found that the diversity of the system
in the scale invariant model shows a kind transition
from poor states to diversifying states as changing the
characteristic exponent λ. We could find a similarity
between the transition and the ordinal second-order
phase transition. The linear stability analysis illus-

Figure 5: Distributions of off diagonal part element of
the stability matrix when 50 species coexist with each
λ. The data are averaged over 500 samples.

trated that the larger λ brings both stronger interac-
tions and stabilizing of the system together.
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